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1. Introduction

Complementarity plays an important role in both general equilibrium

theory [1] and mathematical programming. We will be concerned with the

linear complementarity problem (LCP) of finding an x in R1’ such that

Mx+v > O, x > O , <x ,(Mx+v)>~~~0 (LCP)

where M is a given n x n matrix and v is a given vector in R’~
Applications of this problem can be found in such areas as economics,

engineering, and game theory (see, for example, [2], (7] ). A number

of algorithms [4], [7], [9] have been specifically designed to take

advantage of the special structure it offers. In each case, however,

their applicability is limited by the requirement that U satisfy

certain conditions. In this paper, we offer a solution to LCP that is

independent of the structure of M • Our approach is based on Mangasarian’s

[8] observation that the linear complententarity problem is equivalent to

minimizing a piecewise linear concave function of a polyhedral set

contained in the nonnegative orthant; i.e.,

_______

_ _ _ _ _ _ _ _ _ _— ~~~~ —; - -. - . 
~~

- -
~~

- ------ - - - — -- - - - -  - ----- - — —
________ - - - ~.~~__ ___. _ - ‘~~~~~ -— ~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~. -~~~~ .S-- 5 - — - - — .



I
T—403

•1
n

mm ~ { min(O , M1x —  x1 + v~ ) + x } (1)
x L s i l  i

where S { x : Mx + v > 0, x > 0 } and M~ is the ith row of M

In the manner described by Bard and Falk [3], a general branch
and bound algorithm is used to solve a separable representation of (1).
In fact, if Mx + v in LCP is replaced by g(x) , where g is an - 

- -

implicitly separable function which maps R’~ into itself, the same

methodology can be used to solve the more general problem that results.

In the next section, a brief discussion of the branch and bound

algorithm is given. Following this, the characteristics of a linear

program (LP) equivalent to LCP are presented and a comparison is made

between this problem and the series of subproblems set up by the algorithm

under the branch and bound philosophy. Special attention is paid to

the case where the algorithm can be expected to produce a solution to

the linear complementarity problem on its first iteration. Finally,

two examples are presented and the results contrasted with alternative

solution techniques.

2. The Branch and Bound Algorithm

The algorithm that we will use for the computations was proposed

by Falk [5] and coded by Grotte [6]. As applied to nonconvex problems

with linear constraints, it provides approximate solutions by replacing

each of the original functions with their piecewise linear convex envelopes.

The branch and bound procedure solves this lower bounding problem first

to get estimates on the optimal value of the approximating problem, and

to set up new problems, if the estimates do not yield a global solution.

When all the original functions are piecewise linear, as they are in (1),

the solution will be exact, rather than approximate.

Branch and bound algorithms designed to solve mathematical programs

generally produce sequences of upper and lower bounds that converge at the
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I
optimal value. This is, indeed , the case with MOGG (the computer code);

however, if a solution to LCP exists1 the value of the objective function

in (1) at the solution will be zero. Knowing this fact greatly improves

the efficiency of the algorithm by permitting an independent check for

convergence to be made at each iteration.

3. An Equivalent Linear Program

Mangasarian [8) has shown that for any real a x n matrix U , L
if the solution to LCP exists, it can be obtained by solving the linear

program,

mm ( c x :  x c s } (LP)

where c is some suitable vector in R~. The following set of conditions

(see (81 Theorem I.), given here for completeness, characterizes a suitable

c vector.

c r + MTS, (r,s) > 0 (2.1)

= 12 + vd
T 

(2.2)

<M ,(Y 1
_sdT)> + (~ 2

_~~ T) 0 (2.3)

+ <8,12
> — <v,(Y

1
_sdT), ~T (2.4)

diag p diag (Y
1
+Y
2
) > 0 (2.5)

Z1~
p Z2 C Z~ Y1~ ~

‘2’ d, p ?~ 0 (2.6)

where r, s, d, p are all in R~ , and Z1, Z2, ~1. Y~ are all in

Rfl~
UI ; Z is the set of all real square matrices with nonpositive off—

diagonal elements.

Because of the presence of two bilinear conditions (2.3) and (2.4),

it is not easy in general to determine a c vector for an arbitrary U

However, for a number of special cases including those when U is a

r~~~~~~~~~~~~~~~~~~~~1~~tl



- - 
- - - -

T—403

Z—matrix , or when U is strictly or irreducibly diagonally dominant [10]

a suitable c can be obtained through a series of intermediate calculations

and the linear complemencarity problem can be solved as an ordinary linear

program.

Unfortunately, even for these special cases, it is rarely a straight-

forward matter of identifying the matrices, vectors, and side conditions

that are needed to calculate a suitable c vector. When the dimensions

of the problem are greater than three, the work required to determine

which linear program to solve begins to rival the work required to obtain

a solution to LCP. Those cases where c can be easily determined are

discussed in Section 5.

4. The Relationship Between LP and MOGG

In addressing LCP, MOGG sets up and solves a series of linear

programs that closely resemble LP. The constraint region of each sub— S

problem is identical to that of LP, but the cost coefficients vary f rom

iteration to iteration. Eventually, MOCG selects a “correct” set of

coefficients and produces a solution. The coefficients are correct

— only in the sense that the supporting hyperplane (objective function)

at the solution of the associated linear program passes through the

origin. They are not necessarily equal to the value of a c in LP

as determined by conditions (2.1) — (2.6). There is no guarentee that

the objective function in LP evaluated at the solution will be equal to

zero. ic, see this, let us introduce a set of auxiliary variables w1
(I — l,...,n) for the purpose of transforming (1) into a separable

programming problem; that is:

n
mm E { min (0,w1) + Xj 

} (3)
xCS i—l
wCW

subject to

V
1 

— M
i
x + x~ = v~ I
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f

where W is an arbitrarily large hpyerrectangle in R5 .

The iterative procedure used by MOGC to solve (3) was described
in Section 2. The equivalent series of linear programs addressed in
this procedure can be given in terms of the original variables and a

nparameter 11 in K as follows:

n.e: ‘ {ci
1
w~ + x1 } (4.1)

xCS 11.
wcW

subject to

— M
1
x + = v~ I — l,-...,n (4.2)

where ct~ assumes one of the following three values: 0, 1/2, 1,

depending upon which stage the algorithm is in. At the first stage,

a
1 1/2 (1 = 1, 2,... ,n) ; this represents the convex underestimating

problem. Although there are 3~ possible combinations of the ct .~’s ,
some of the associated linear programs turn Out to be redundant and are

not addressed by MOGG. It is possible to verify through enumeration that
— I is the maximum number of subproblems that might have to be

solved.

Each auxiliary variable w~ in problem (4) can be eliminated

by substituting its equivalent, as determined from (4.2), into (4.1),

and noting that W is arbitrarily large. Lemma 2 in (8] assures that

the solution of LCP occurs at a vertex of S • The resulting problem is

n
mm S { x1 + a1(M1x — x

1 
+ v1) 

}
xCS i 1

n
< >  mm S { (l—cz1)x 1 + a1M1x 

} , (5)
XCS i 1

which has the same constraint region as 12; hence, any solution to 12

— 5 —  
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will be both feasible and optimal to (5). This leads to the following lemma

which characterizes immed iate solutions to LCP. - 

—

LEMMA 1. Let the linear complementarity problem have a solution,

and let the objective (unction c of the associated linear program satisfy

conditions (2.1) — (2.6). Now, if, for some y > 0 ,

/ n
c .y f ] +  ~ M~ ) ,  j 1 , 2,...,n (6)j j_

~ 
.1

then Falk’s algorithm will produce a solution to either problem on its

first iteration.

This can be seen by letting cz~ — 1/2 (i = 1,...,n) and equating
the cost coefficients of 12 and (5). The applicability of this result

is more general than it w~ i1d first appear because c will usually assume

a range of values.

In fact, (6) is only a sufficient condition for the algorithm to

produce a solution on its first iteration. A necessary and sufficient
/ n - \

condition would be that the vector y (1 + S Mi4 , i =
i—i

lie in the cone formed by the gradients of the binding constraints of

the associated linear program. This condition, of course, is untestable

in that the calculation of c offers no hint as to which constraints

will be binding at the solution.

5. A Verifiable Case

In general, even if a suitable c is known, the only way to

determine If 140CC will produce a solution to LCP on its first iteration

is by evaluating (6). In this section we examine the special case where

c assumes a unit structure and show that in this instance the solution

is immediate. A statement of this result is contained in the following

theorem.

• ThEOREM 1. Let x* solve LCP. If M is such that c — Be

— 6 —
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satisfies conditions (2.1) — (2.6) for some ~ > C and e (1,1,... ,l)
then I4OGG will produce a solutiob o LCP on its first iteration.

PROOF: Let (x*, u~ , u~) in R~
’ x R~ x R~

’ solve 12, where u~
and u~ are the Kuhn—Tucker multipliers associated with th~ inequality
constraints Hz5 + v > 0 and x* > 0 , respectively. It will be shown

- n n nthat there exists a corresponding point (x*, u1, fl2) in R x R x R
that satisfies the Kuhn—Tucker conditions for  (5) with a1 

= 1/2
(i. 1,. ..,n) and is thus the solution to the f irst  subproblem set up by
140CC.

Letting c = ~e , the first order necessary conditions for 12
that require that

* * fr ni\: ~~
=
~~11 ~: 

~~~~~~~~~~~~~ 
~~~~

• 
~~l/ ~M\lrf \flfl (7)

• 
/1\ /0

* * I:+ u 2l~~~~. ) + . . . + u2~~~~~
.

if (x *, u , u )  
is to be a solution. Similarly for (5) with a~ = 1/2

/1 
+ 

~ 

M
i~
\ f~ i\ fMnl

~ 
( : ~~~~ ( : 

hi ~~ +U ln (
\ I + M / \-M~~

i—i in (8)

/0\
IO~ I:

+ ‘~l2 ) + + U
2 ( 

~0/ 1

• Multiplying (8) by 2~ and rearranging we get

— 7 - .

_____________________________ 
— - — - - - 5 --. 5 — - - — 7

~~~
- - ~~~~~~~~~

,
~~~~~~

--- 
S

- ~~~~~~~~~~ --~~~~~~~ 
-i-.- - .~~~ 

g~~~~~~2—~~~~~~ ~~~~~~~ ~~
---

~ ~~~~~~~~~~~~~~~~~~~~~~



T - 
~~~~~~~~~~~~~~ .~~-~~~~~--..-- -

~
—., - -

~~~~~~~, _________

-$
T—403 j

The following example 181 illustrates the equivalence stated in

Theorem 1 while concurrently demonstrating the impracticality of casting
th e linear coaplementarity problem as a linear pr~~ram when e is not

expl icitl y given. The example is based on the following theorem.

THEOREM 2 (Mangasarian (3 1) . 1! S ~ ~ and there exist r,s in
~~ Z~ , Z2 

in RflXI
~ such that

MZ 1 Z2 + v d T

+ < s ,12> > 0

+ < s , ( Z 2+D) > > 0 , D diag d

, Z 2 in Z ; d , r , s > 0

Tthen LCP has a solution which can be obtained by solving 12 with c — r + M a

~.XPJWLE 1.

/ 0 34 \  f_2

(— i_ i  o )  a n d v a (  0

\2-l -3/ \1

This example satisfies the conditions of Theorem 2 with d s — e , r 0

/—0 o o\ /2_ 1 _2\

— ( 0 —l 0) and = (_i o o -

\ o  0 —1/ \—i 0 2

Now c r + MTs - o + 14T~ - e ; hence, by Theorem 1 with ~ — 1 (or Lemma 1
with -r — 1/2) we have the equivalence of (5) and 12. As expected , the first

iteration of the algorithm produced the equilibrium point x5 — (2/5, 2/ 5 , 1/5).
It is interesting to note that this problem cannot be solved by either Lemke’s
method or the principal pivoting procedure L4 1.

• The next example [8] illustrates the case where a solution to the

—
~~~~~~

—
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- 
- 55___- - - -55 -— -5-- - — 55_____ ~~~~—5-55 — 55-- — 5 — -- --— 

—~~~~- 55— -.- -- -5--- - -
~~~~~~~~~~~~~~ 5 S .Wfl.5. - - - . -—

T—403

linear complcmentarity problem is not obtained on the f i r s t  i teration
of Mocc.

EXAMPLE 2.

1—1 l\ / 1  H
M —  ( ) a n d y —  (

\ 2 -l J

This example also satisfies the conditions of Theorem 2 with

r~ - (0,1), - (1,0), d1 = (0,2), Z 1 ( ) , = (~ :)
and c (—1,2) . The associated linear program has the (unique) solution

x 1 — .L, x2 
= 0 which expectedly solves the linear complementarity problem.

When MOGG was used to solve this problem , the solution was found after

three stages of branching had taken place. The branch and bound tree is

depicted in Figure 1, and , as can be seen, six of the seven potential 
S 

-

subproblems had to be examined before convergence could be established .

(The numbers adjacent to the nodes represent the upper and lower bounds

for the associated subproblems .)

0.5 -
0.0 -9.5

0.5
-4-5 1 .1 12 

0.5
—4.5

2.1 2.2

Figure 1 Branch and Bo:nd Tree for LCP ~ camp1e 2
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When Lemke’s method was tried on this problem , an unbounded

(infeasible) ray was generated by letting x
2 ~ , thus precluding a -

solution. The principal pivoting algorithm also ran into trouble by -

cycling rather than converging to solution.

From these two examples, we see that MOGC offers  a clear advan-

tage in solving the linear complementarity problem over the principal

alternatives. Because MOCG does not insist upon a special matrix

structure, it will solve all such problems without first having to

check the properties of H or evaluate an of ten unwieldy set of

nonlinear conditions.

In general, the branch and bound approach would appear to offer

the dual advantage of being universally applicable, and cosputationally

superior. This results directly from the guaranteed upper bound , and

the simple three—segment form of the objective fur...tion.

I

-11 - 
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To CO~~C with the expanding technology, our society must
be assured of d continuing supply of rigorous ly trained
and educated engineers. The School of Engineering and
Applied Sc ien ce is comp letely committe d to this ob-
jective. 


